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ABSTRACT 

The hypothesis that species-rich assemblages are resistant to invasion by non-native 

species has generated considerable research and controversy.  However, the relevance of such 

research to the conservation of biodiversity is questionable, given that local species richness 

often does not correlate with regional or global species richness, two metrics undoubtedly 

important to conservation.  Furthermore, species of greater conservation interest (i.e. 

endemics) and widespread generalist species may compete differentially with non-native 

invasive species. To test whether plant species richness or species fidelity to a regionally rare 

habitat were more important in competitively suppressing an invasive species, I established a 

field competition experiment in an oak woodland in north-central Mississippi (USA) between 

the non-native invasive grass Microstegium vimineum and six native plant species of varying 

fidelity to fire-maintained open woodlands.  Using a split-plot design, dense, established 

patches of Microstegium were treated with one of the three following native planting 

treatments or control: (1) a six species polyculture, (2) a monoculture of six individuals of a 

single species, or (3) a control simulating the soil disturbance of the plantings.  I then monitored 

Microstegium percent cover through the 2015 growing season and into the spring of the 

following year.  Emergence of the native species in the spring of 2015 was high (85% survival), 

which in turn appeared to initially suppress Microstegium seedling cover.  This initial 

suppression of Microstegium was variable, with the native generalist species outperforming 

natives that are more highly indicative of open woodlands (i.e. endemics).  However, 
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subsequent survival of all native species through 2015 was relatively low (38%), and there was 

no evidence of suppression of Microstegium either in the fall of 2015 or in the spring of 2016.  

Overall, these results indicate that of the six native species utilized here, the generalist species 

more indicative of disturbed habitats, yet also of less value to conservation, were more 

successful at reducing the emergence of this highly invasive grass.   However, results also 

suggest that such a highly competitive invader may ultimately establish and proliferate, 

regardless of any initial resistance from resident species, possibly to the detriment of regional 

and global biodiversity. 
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INTRODUCTION 

As proposed by Elton (1958), the hypothesis that species-rich assemblages are resistant 

to invasion by non-native species has generated considerable research and controversy 

(Robinson et al 1995, Wiser et al 1998, Levine and D’Antonio 1999, Levine 2000, Zavaleta and 

Hulvey 2004, Stachowicz and Tilman 2005, MacDougall et al 2009).  Diversity-mediated invasion 

resistance is largely influenced by classic niche theory, which predicts species-rich communities 

as having relatively high levels of niche saturation, thereby causing a reduction in potential 

colonization by non-resident species (Elton 1958; Stachowicz and Tilman 2005; MacDougall et 

al 2009).  To this end, both experimental and theoretical studies have shown that diverse 

communities tend towards having reduced invasibility (Case 1990; Levine 2000; Zavaleta and 

Hulvey 2004).  In contrast, some observational studies have shown positive relationships 

between native species richness and non-native species richness or abundance (Robinson et al 

1995, Levine and D’Antonio 1999, Stohlgren et al 2001, Houlahan and Finlay 2004, Stachowicz 

and Tilman 2005), whereas other observational studies have shown that some negative 

relationships between native and non-native species can be explained by environmental factors 

that have opposite effects on native and non-native species (MacDougall and Turkington 2005, 

Surrette and Brewer 2008, Brewer 2010). The apparent disparity between the results of 

experiments and theory on the one hand and the results of observational studies on the other 

has been reconciled by acknowledging and demonstrating that competition and numerous 

other factors (e.g., propagule supply, disturbance, resource supply) influence relationships 

between native and non-native species under natural conditions (Levine 2000, Davis et al. 2000, 

Stachowicz and Tilman 2005, Brewer 2011b).  Regardless of whether factors other than 
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competition play a dominant role in influencing invasibility, if competition plays some role, 

reductions in species diversity could make communities more invasible (Levine 2000; Zaveleta 

and Hulvey 2004, Brewer 2010).  For this reason, some ecologists have argued that, in addition 

to preserving other ecosystem functions, the prevention of species losses also reduces 

invasibility, thereby conveying a pragmatic reason for conserving biodiversity (Zavaleta and 

Hulvey 2004, Tilman et al 2014).  Consequently, studies of diversity-invasibility relationships 

have the potential to inform conservation and land management practices, in addition to 

community assembly processes. 

The notion that preservation of local species diversity in intact natural communities 

accomplishes two goals, preservation of global biodiversity and resistance to invasion, is based 

on the assumption that declines in global biodiversity are caused by worldwide declines in local 

species diversity within intact communities. This assumption has been challenged (Whittaker 

1972; Alverson et al. 1994; Brewer 2010; Vellend et al. 2013; Thomas 2013).  Preserving local 

species diversity simply requires gains of species that equal or exceed local extirpations of 

species.  In contrast, preserving global biodiversity requires land use and management practices 

that will ensure that global extinctions do not exceed the rate of speciation (Noss et al. 1995, 

Sax and Gaines 2003).  Increases in local species diversity that result from higher colonization 

rates relative to local extirpation rates do not increase global biodiversity.  Only speciation 

increases global biodiversity.  In addition, local extirpation of widespread species is likely to 

have relatively little effect on global biodiversity compared to local extirpation of globally rare 

species.  Habitat destruction is the main cause of extinctions and thus declines in global 

biodiversity, and losses of species-rich habitat to agricultural lands and residential development 
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undoubtedly also cause a reduction in local species diversity (Thomas 2013).   Nevertheless, the 

more important effect of habitat destruction on global biodiversity may be through the 

destruction of rare habitats that support globally rare endemic species (Farnsworth 2007, Pimm 

et al. 2014) than through reduction in local species diversity, per se (Thomas 2013).  Although 

more subtle habitat changes may significantly affect local species diversity without destroying 

an entire habitat, a recent meta-analysis of studies examining changes in local species richness 

revealed no net decline in local species diversity worldwide (Vellend et al. 2013).  Declines in 

local species diversity in some communities were balanced by increases in local species 

diversity in others (Vellend et al. 2013).  Whether the relatively few observed declines in local 

species diversity in some intact natural communities significantly contribute to global declines 

in biodiversity remains unclear.  Therefore, while subtle habitat management that minimizes 

local extirpations of species within intact ecosystems may prevent some biological invasions 

(Levine 2000), it remains unclear whether such management practices are important for 

maintaining global biodiversity. Assessing how endemic species of globally rare habitats 

compete with invasive species may be of greater value to conservation of biodiversity and 

resistance to invasion. 

Precisely how endemic species might differ from generalist native species in their 

competitive interactions with non-native invasive species is not entirely clear. When endemic 

species are also habitat specialists, one might expect them to be strong competitors, whereas 

generalists might more likely be fugitive species that must disperse away from competitors to 

persist (Platt and Weiss 1985; Nee and May 1992). To the extent that specialists associated with 

globally rare habitat are also good local competitors, management that increases their 
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abundance could have the dual benefit of preserving global biodiversity (by reducing local 

extinction of globally rare habitat specialists) and increasing community resistance to invasion. 

Such management need not increase local species diversity to be effective, however, because 

globally rare species need not be locally rare or sparse (Walker 1993). On the other hand, some 

widespread perennial plant species associated with productive, early and mid-successional 

habitats exhibit characteristics that confer high competitive ability, such as rapid vegetative 

growth rates and continued occupation of sites by virtue of their perennial life history [e.g., the 

Competitor strategy of Grime (1979)]. Management that favors such competitive generalists 

could reduce invasion, but by itself might not be particularly effective at preserving global (or 

local) diversity. Accomplishing both conservation objectives therefore might require 

management that simultaneously favors both habitat specialists and competitive generalists, 

assuming competitive displacement of specialists by generalists can be avoided. 

In upland, oak-dominated forests of the eastern United States, the land management 

practices most likely to affect local species diversity and/or the abundance of habitat specialists 

are prescribed burning and canopy reduction associated with ecological restoration of fire 

(Hutchinson et al. 2005; Brawn 2006; Brewer et al. 2015).  It is well understood that disturbance 

promotes increases in diversity and abundance of groundcover plants in oak-dominated 

systems (Hutchinson et al. 2005, Brawn 2006, Brewer et al. 2015, Brewer 2016). Considering 

fire as a low-intensity disturbance, positive post-fire responses of native herbaceous species are 

often caused by reduced competition from fire-sensitive species and increases of light at the 

soil level (Gilliam et al. 1988).  Reductions in competition from fire-sensitive species and 

increases in resource availability, however, can also favor non-native species (Davis et al. 2000; 
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Huston 2004).  Unfortunately, the reestablishment of natural fire regimes to historically fire-

maintained ecosystems is a community-level disturbance that can promote increases of 

invasive plant species (Crawford et al. 2001, Glasgow and Matlack 2006, Keeley 2006, Brewer et 

al. 2015).  Given greater management interest in using prescribed burning in eastern US upland 

forests (Abrams 1992, Matlack 2013), the undesirable consequence of directly increasing 

species invasion presents a management challenge for restoration practitioners.  Considering 

this potential dilemma, it is perhaps necessary to determine factors biotic or otherwise that 

potentially limit the proliferation of invasive species already established at natural sites.   

Although ecological restoration can reduce competition from fire-sensitive species, to 

the extent that it increases the abundance of multiple fire-tolerant species, such management 

has the potential to increase competition among fire-tolerant species that respond positively to 

such disturbances (Brewer 2011a).  Such disturbance-mediated increases in competition 

associated with ecological restoration of fire provide an opportunity to examine the 

effectiveness of competitive suppression of non-native fire-tolerant species by established 

native fire-tolerant species. By comparing the competitive effects of endemic habitat specialists 

and widespread generalists that respond favorably to fire restoration on invasive species that 

likewise respond favorably to fire restoration, one could determine whether fire restoration 

and planting of selected native species could be used to simultaneously preserve biodiversity 

and reduce the proliferation of invasive species. 

An invader of eastern US deciduous forest with increasing notoriety for positive 

responses to prescribed fire is the exotic Microstegium vimineum (Trin.) A. Camus.  An annual 

C4 grass native to East Asia, Microstegium was first discovered in Tennessee in 1919, most likely 
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arriving by seed from packaging material (Fairbrothers and Gray 1972).  Since its introduction, 

the exotic grass has spread to twenty-four US states, with its current distribution ranging from 

Texas to Massachusetts (USDA 2016).   In the initial stages of establishment, Microstegium 

appears to favor disturbed habitat such as roadsides and forest edges (Cole and Weltzin 2004; 

Christen and Matlack 2009).  Both floodwaters and human activity along roadways facilitate the 

local dispersal of Microstegium, as well as its long-distance dispersal along road axes (Christen 

and Matlack 2009; Tekiela and Barney 2013).  However, little is known about long-distance 

dispersal that allows for patch founding in the interior of forests, with only anecdotal evidence 

supporting its spread by animals (Mehrhoff 2000; Warren et al 2011).  Following its 

establishment, Microstegium can alter forest succession dynamics, competitively suppress 

native plant species and increase the intensity of prescribed fires (Flory and Clay 2010; Brewer 

2011b; Emery et al. 2011; Wagner and Fraterrigo 2015; Brewer et al. 2015).  In addition, the 

invasive grass produces a prolific seed bank, potentially allowing sub-populations to persist 

through time in the forest understory (Gibson et al. 2002).   

 In this study, I utilized an ongoing oak-hickory woodland restoration experiment in 

north-central Mississippi (USA) to test several hypotheses regarding competition between the 

non-native invasive grass Microstegium vimineum and native plant species of varying fidelity to 

open woodlands. Specifically, I tested the following hypotheses: (1) species-rich (i.e. 

polyculture) and single-species (i.e. monoculture) planting treatments of native plants 

indicative of a variety of open habitats will suppress the emergence and growth of the 

Microstegium (hereafter, the general suppression hypothesis); (2) overall, polyculture 

treatments will suppress the emergence and growth of Microstegium more so than 
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monoculture treatments (hereafter, the diversity-mediated suppression hypothesis); and (3) 

the greater competitive suppression of Microstegium of the polyculture treatments will result 

from the presence of a few relatively highly competitive species (hereafter, the selective 

suppression hypothesis).  
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METHODS 

Study Site 

The study described here took place in upland mesic hardwood forest at Strawberry 

Plains Audubon Center, an ~1000-ha wildlife sanctuary located in the loess plains of north-

central Mississippi, that is currently undergoing oak-hickory woodland restoration.  In 2004 

approximately 1 hectare treatment and control areas were established in a paired design at two 

sites within Strawberry Plains separated by approximately 2 km [site 1 (34°49'60"N, 

89°28'32"W); site 2 (34°49'52"N, 89°27’7"W).  Beginning in 2004 at site 1 and in 2008 at site 2, 

individuals of tree species historically absent from the mesic uplands of north-central 

Mississippi [e.g. Liquidambar styraciflua (sweetgum), Nyssa sylvatica (blackgum), Prunus 

serotina (black cherry)] were thinned from 30 x 30 m plots within the treatment area (see 

Brewer 2001 and Surrette et al. 2008 for pre-settlement tree species composition).  In addition, 

tree species known to be historically present but in lower abundances in these upland forests 

were thinned from the canopy [e.g. Quercus falcata (southern red oak), Carya tomentosa 

(mockernut hickory)].  From 2004 to 2014, site 1 was burned biennially, typically in March or 

April.  Likewise, the treatment plot at site 2 was burned biennially from 2008 to 2012, every 

March or April.  In 2014, coinciding with the restoration treatments at both sites, there were 

significant increases in native groundcover species indicative of fire-maintained open habitats 

relative to the control areas (Brewer et al. 2015).  However, there were also significant 

increases in Microstegium in the treated plots at both sites (Brewer et al. 2015).  Soils at both 

sites are generally a mix of Providence silt loam and Cahaba sandy loam, with Providence silt 
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loam slightly more prevalent at site 1 and Cahaba sandy loam slightly more prevalent at site 2 

(Morris 1981, Maynard and Brewer 2013).     

Experimental Design 

In November 2014, using a split-plot design, within the treated areas, I established 

twelve ~3-m2 whole plots within all the patches of Microstegium I could find that were large 

enough to spatially contain them (Fig. 1).  I was able to establish a total of twelve whole plots at 

both sites combined. I established two whole plots at site 1 and ten whole plots at site 2 and 

made no attempt to account for site as a factor.  The whole-plot treatment factor was the 

species group that comprised the monoculture split-plot treatment, with two levels (open 

woodland indicator and disturbance indicator).  Each species group consisted of three species 

(described below). Species was considered a random factor nested within species group, and 

there were two replicate plots per species.  Each whole plot consisted of three 0.75 m2 subplots 

(for a total of 36 subplots), with each subplot containing one of three of the following split-plot 

treatments: (1) a polyculture of six species consisting of one individual per species; (2) a 

monoculture of six individuals of a single species; or (3) a control treatment simulating the soil 

disturbance of the planting treatments. Each of the six species comprising the monoculture 

subplot was assigned randomly to two of the twelve whole plots. I then randomly assigned one 

of three planting treatments (i.e. the split-plot treatment) at the subplot level.  This design 

allowed me to statistically test whether differences in Microstegium emergence and 

establishment between polycultures and monocultures were due to a species richness effect 

versus a species identity effect. 
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Figure 1 - Layout of the split-plot experimental design.  Subplots were spaced apart by 
approximately 0.2 m to avoid edge effects.  In total, 12 whole plots were established across 
sites 1 and 2. The identity of each whole plot was defined by the randomly assigned species 
identity of the Monoculture split-plot treatment. 

For the polyculture and monoculture planting treatments, I chose the following six 

native perennial plant species: Coreopsis tripteris (tall coreopsis), Desmodium laevigatum 

(smooth tick trefoil), Helianthus silphioides (Ozark sunflower), Saccharum giganteum 

(sugarcane plumegrass), Schizachyrium scoparium (little bluestem), and Solidago canadensis 

(Canada goldenrod).  I based my selection of these six species on several criteria.  Firstly, I 

selected three species that were indicative of open habitats, including globally rare habitats 

such as fire-maintained open woodlands, savannas, and barrens, as well as three species 

relatively more indicative of globally common early- or mid-successional habitats such as old 

fields and roadsides.  Habitat indication statuses were derived from Brewer and Menzel (2009), 

as based on the habitat associations of Jones (2005), and used to group the six species into one 

of two species groups (the whole plot treatment factor), either as those indicative of fire-

maintained open woodlands (hereafter, woodland indicators), or those much more relatively 

indicative of disturbed early- and mid-successional habitats (hereafter, disturbance indicators).  

Secondly, the six species were drawn from a pool of native species responding positively to the 
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oak-hickory woodland restoration treatments at Strawberry Plains Audubon Center (Brewer 

and Menzel 2009; Brewer et al. 2015).  Thirdly, the species chosen here varied widely in their 

geographic distribution and level of endemism, with several species ranging across the entire 

contiguous United States, southern Canada, and/or Mexico (Schizachyrium, Solidago), to one 

species being nearly restricted to the Mid-South United States (Helianthus).  Lastly, I compiled 

an assemblage that would represent a variety of plant functional groups.  Using species 

information derived from the USDA PLANTS Database (2016), I placed the six species here into 

one of the three following functional groups: C4 grass, C3 forb, and C3 nitrogen-fixing legume. 

Establishment of Transplants 
 

In December 2014, transplants of the native species were collected (144 plants total) 

on-site near site 1.  Bulk soil was removed from the roots, all aboveground tissues were 

removed, and the plants were weighed and transplanted as cuttings.  To minimize edge effects 

of the treatments, each subplot was spaced approximately 0.2 m from neighboring split-plots. 

The transplants were then individually marked with a metal wire and tag and received 150 mL 

of water to stabilize soil surrounding the plant roots.  For polycultures, the locations of all six 

individual transplants were randomized within each plot.  Control treatments were applied to 

simulate a comparable amount of soil disturbance associated with the planting treatments.  

Therefore, six holes corresponding to planting locations in treated plots were dug, refilled with 

soil, and then received approximately 150 mL of water. 

Data Collection 

To quantify the natural emergence and success of Microstegium, I measured 

Microstegium percent cover in a 20 x 20 cm sub-subplot centered on each individual transplant 
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or control treatment (six sub-subplots total per subplot), during mid-May 2015, early October 

2015, and mid-May 2016.  Respectively, these dates coincide with the approximate emergence 

and peak biomass of Microstegium at 34°49’N.  I also followed the emergence and survival of 

the native transplants through the 2015 growing season, as well their subsequent emergence in 

spring 2016.  All native species utilized in this study were long-lived warm-season perennials 

that undergo senescence of all or most aboveground tissues.  Therefore, survival through the 

growing season was assessed by the presence of at least some aboveground green tissue (i.e. 

stem and/or leaves) through early- to mid-October and the following spring. 

Measurements of the native transplants included the following: stem height and length 

of longest leaf for the forbs (Coreopsis, Desmodium, and Helianthus), and shoot number, height 

of tallest stem, and length of longest leaf for the grasses (Saccharum, Schizachyrium).  

Reproductive allocation for the transplants was quantified by the following: counts of the 

number of flowering culms per plant (Schizachyrium), length and width of flowering panicle per 

plant (Saccharum), and counts of capitula and/or seed pods (Coreopsis, Helianthus, 

Desmodium).  To account for variation of light availability and spring leaf litter on the 

emergence, growth and survival of Microstegium and the native transplants, I measured canopy 

openness and percent leaf litter cover at each subplot and sub-subplot, respectively.  Canopy 

openness for 2015 and 2016 were quantified by averaging four orthogonal readings from a 

spherical concave canopy densiometer.  

Data Analysis 

 Separate split-plot analysis of variance (ANOVA) tests were used to compare differences 

of mean Microstegium cover between split-plot treatments (polyculture, monoculture, and 
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control) for 2015 and spring of 2016.  The general suppression hypothesis would be supported 

by a significant split-plot effect, followed by a significant planned contrast of the monoculture 

and polyculture treatments vs the control, such that mean Microstegium cover was significantly 

higher in the control.  Likewise, the diversity-mediated suppression hypothesis would be 

supported with a planned contrast of the monoculture vs polyculture treatments, such that 

mean Microstegium cover was significantly higher for the monoculture treatment.  To address 

the selective suppression hypothesis, I first averaged Microstegium percent cover over the two 

replicates per species and then used the species x split-plot interaction nested within species 

group to test the species group x split-plot interaction.  A significant species group x split-plot 

interaction result from the split-plot ANOVA would then indicate that the difference in 

Microstegium cover between polycultures and monocultures depended on whether the species 

comprising the monoculture was a woodland indicator or a disturbance indicator, supporting 

the selective suppression hypothesis.   

If split-plot ANOVA revealed significant differences between treatments with respect to 

their effects on Microstegium cover, then additional, separate split-plot ANOVAs were run with 

alternative response variables (spring leaf litter cover, initial transplant weight, canopy 

openness), to address the possibility that such variables were accounting for the observed 

patterns in Microstegium cover.  For example, if leaf litter was responsible for significantly 

lower emergence of Microstegium in experimentally treated subplots, then a split-plot ANOVA 

with leaf litter as the response variable would likely reveal significantly higher litter cover in 

those subplots. Prior to analysis, initial transplant weights and leaf litter cover values were 

averaged across the six species per subplot and six cover values per subplot, respectively. 
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Although the competitive effects of Microstegium on the native transplants could not 

specifically be examined in this study, I used logistic regression to analyze the main effects of 

Microstegium cover on the survival of native transplants through 2015 and emergence in 2016, 

thereby examining the relationship between Microstegium productivity and transplant survival.  

In addition to Microstegium cover, the main effects of canopy openness and habitat indication 

(woodland or disturbance) on transplant survival were tested.  Microstegium cover, canopy 

openness, leaf litter cover, and initial weight of the native transplants were checked for 

normality and homoscedasticity and transformed as necessary.  I used the Wald test to 

determine significance of the predictors for the logistic regression.  ANOVA tests were 

conducted using JMP version 5 and the logistic regression analysis was done using R version 

3.1.1. 
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RESULTS 

Survival of the native transplants in the spring of 2015 was high, with over 85% of all 

transplants emerging, which in turn appeared to initially suppress Microstegium cover.  

Coinciding with high transplant emergence, Microstegium cover in spring 2015 was significantly 

different among the three split-plot treatments (F2,8 = 17.73, p < 0.01). In support of the general 

suppression hypothesis, an orthogonal contrast revealed highly significant differences between 

the two planting treatments combined and the control, with the polyculture and monoculture 

treatments having significantly lower Microstegium cover relative to the control (t8 = 5.78, p << 

0.01; Fig. 2).  Although Microstegium cover, on average, was slightly lower in polycultures than 

in monocultures (33.79 vs. 36.53%, respectively, MSE = 1.33%), the contrast of the effect of 

polycultures versus that of monocultures on Microstegium cover was not statistically significant 

(F1,8 = 2.12, p = 0.18). Hence, I found no support for the diversity-mediated suppression 

hypothesis in this study (Fig. 2). However, the split-plot treatment by species group interaction 

approached significance (F2,8 = 4.41, p = 0.05), warranting an examination of the interaction 

components.  In support of the selective suppression hypothesis, the difference in 

Microstegium cover between polycultures and monocultures depended on whether the 

monoculture species was a disturbance indicator or a woodland indicator (Fig. 2). Specifically, 

the cover of Microstegium appeared to be reduced in polycultures compared to monocultures 

of woodland indicators but not compared to monocultures of disturbance indicators 

(Interaction contrast F1,8 = 8.76, p = 0.02; Fig. 2).  
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Table 1. Summary of split-plot ANOVA and orthogonal contrasts for spring 2015 

Microstegium cover.  Whole plot effect is Species group (Sg); split-plot effects are the split-plot 

treatment (Sp; monoculture, polyculture, or control) and species group by split-plot interaction 

(Sg x Sp). Orthogonal contrast sources are monoculture (M), polyculture (P), control (C), 

woodland monoculture (WM), disturbance polyculture (DP), woodland polyculture (WP), and 

disturbance monoculture (DM). 

Source df F p 

Species group (Sg) 1 0.17 0.69 

Whole-Plot Error 4   

Split-plot treatment (Sp) 
 

Contrast: M, P vs. C 
 
Contrast: M vs. P 

2 
 
1 
 
1 
 

17.74 
 
33.36 
 
2.11 

<0.01 
 
<0.01 
 
0.18 
 

Sg x Sp 
Contrast: WM,DP vs. 
WP,DM 

 

2 
 
1 

4.41 
 
8.76 

0.05 
 
0.02 

Split-Plot Error 8   

Total 17   

 

The initial negative effects of plantings of these native perennials on Microstegium 

cover did not appear to be the result of potentially confounding artifacts.  On average, spring 

2015 leaf litter was marginally higher in polycultures, relative to monocultures and controls 

(35.25%, 32.33%, and 31.0%, respectively); however, a split-plot ANOVA run with log-

transformed spring 2015 leaf litter cover as the response variable did not reveal significant 

differences of litter between split-plot treatments or a significant interaction (p = 0.19, p = 0.55; 

for main effects test and interaction components tests, respectively).  Similarly, canopy 
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openness was higher on average in the planting treatments relative to the controls, with the 

monocultures, polycultures, and controls having 12.15%, 11.63%, and 9.9% canopy openness, 

respectively.  Yet, a separate split-plot ANOVA run with spring 2015 canopy openness as the 

response variable did not indicate any significant differences between these treatments or a 

significance of the treatment by species group interaction (p = 0.42,p = 0.51).  Finally, to 

examine initial cutting sizes between monocultures, I ran a nested ANOVA with the initial wet 

weight of the transplants as the response variable.  On average, cuttings transplanted into 

woodland monocultures were actually larger than cuttings used in disturbance indicator 

monocultures (23.61 g vs. 21.19 g), yet the difference was not statistically significant (p = 0.69).  
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Figure 2 – Microstegium emergence in spring of 2015 for whole plots grouped into species 
groups (disturbance or woodland indicator in monoculture treatment).  Capital letters denote 
significant split-plot effects, and lower case letters denote significant species group x split-plot 
treatment interaction. Values are mean Microstegium cover +/- 1 standard error. 
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In contrast to the high initial emergence and survival of the native transplants, survival 

(i.e., presence of aboveground green tissue) through 2015 was relatively low, with only 38% of 

all transplants persisting or remaining green until fall senescence and only 13% of all 

transplants flowering.  Furthermore, split-plot ANOVA did not indicate any significant 

differences between the split-plot treatments or significance of the split-plot by species group 

interaction for Microstegium cover in the fall 2015 (F2,8 = 0.67, p = 0.54; F2,8 = 0.803, p = 0.48).  

For transplant survival through 2015, logistic regression revealed a significant main effect of 

canopy openness, with probability of survival significantly higher in subplots with greater light 

availability (z = 3.129, p < 0.01).  In addition, the main effect of habitat indication was highly 

significant, with woodland indicators being much more likely to survive through 2015 relative to 

disturbance indicators (z = 3.76, p << 0.01; Fig. 3).  Rather surprisingly, initial size of the native 

transplants and fall 2015 Microstegium cover were not significant in predicting survival (z = -

0.99, p = 0.32; z = -1.37, p = 0.17).  Contrasting sharply with spring 2015 emergence, there were 

also no significant differences of spring 2016 Microstegium cover between split-plot treatments 

and no significance of the species group by split-plot treatment interaction (p = 0.22; p = 0.43; 

Fig. 4). 
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Figure 4 - Microstegium emergence in spring of year 2 (2016) grouped by split-plot treatments. 
Values are mean Microstegium cover and error bars are +/- 1 standard error. 
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Figure 3 – Survivorship of native transplants through year 1 based on species group, 
either disturbance or woodland habitat indicator (z = 3.759, p < 0.001). Values are 
proportions of species for each species group that survived through year 1 to the 
total number of species transplanted per group (72 individuals). 
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DISCUSSION 

The results of this study provide support for initial competitive effects of native plant 

species of varying fidelity to open woodlands on the non-native invasive grass, Microstegium 

vimineum.  Specifically, my hypotheses of general competitive suppression and selective 

suppression of Microstegium were supported.  Conversely, there was no support for my 

hypothesis of diversity-mediated suppression, in that polycultures of native plant species, on 

average, were no more effective in reducing Microstegium cover than were monocultures of 

native species. The initial competitive effects of plantings of native perennial plants that 

respond well to fire restoration on Microstegium, however, did not last beyond the first spring 

of the study.  Neither the number nor the identity of planted species appeared to affect 

Microstegium cover in the second spring.  

The initially negative effect of planting natives (irrespective of species number) on the 

emergence and establishment of a highly competitive non-native species is consistent with the 

hypothesis that even highly competitive non-native species may initially benefit from 

disturbances that reduce competition from native plants (Brewer 2010, 2011a).  Such initial 

suppression may be short-lived, however, when dealing with highly competitive invaders (i.e., 

the species that are of greater conservation concern). Such a potential shift in competitive 

effects between resident species and invaders over time may help explain why many invaders 

known to have strong competitive effects on native species in relatively undisturbed systems 

also benefit (at least initially) from reduced competition cause by disturbances (Brewer and 

Bailey 2014). 
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The lack of support for the diversity-mediated suppression hypothesis in the current 

study contrasts with the results of studies employing more commonly used plant invasion 

experimental designs (i.e. simulated invasion of plant communities by non-native propagule 

addition; Levine 2000; Kennedy et al. 2002; Zavaleta and Hulvey 2004; Maron and Marler 

2007).  The reasons for these conflicting results are not entirely clear. One possibility is that the 

abundant propagule supply in the seed bank of firmly established patches of Microstegium 

(Gibson et al.), combined with the favorable abiotic conditions for the growth of Microstegium 

(spring fire and canopy openings), simply overwhelms any overyielding advantage that a diverse 

assemblage of residents might have over a competitively superior invader (Levine and 

D’Antonio 1999, Levine 2000, Brewer 2008, Corbin and D’Antonio 2010).  Although in general, 

theoretical and experimental studies have provided support for diversity-mediated resistance 

to invasion, there is not agreement as to whether diverse assemblages can resist invasion by 

species that are vastly superior competitors to the residents (Case 1990, Levine and D’Antonio 

1999). Future theoretical and experimental treatments of diversity-mediated invasion 

resistance need to focus more specifically on invaders with a large competitive advantage over 

resident species (e.g. Brewer 2008, Corbin and D’Antonio 2010). Given that these invaders likely 

represent the greatest threat to biodiversity, such theory and experiments will also be the most 

relevant to conservation of biodiversity. 

Although I found no support for diversity-mediated suppression, there was evidence 

that polycultures were initially more effective at suppressing Microstegium than were 

monocultures of one of the species groups (woodland indicators), thus supporting the selective 

suppression hypothesis.  The reason for the apparently greater initial competitive effects of the 
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disturbance indicators (Saccharum, Schizachyrium, Solidago) relative to the woodland 

indicators (Coreopsis, Helianthus, Desmodium) is not clear.  One possibility is an initial size bias, 

where larger initial transplant sizes, particularly for Saccharum and Solidago, may have been 

responsible for the greater initial competitive effects.  However, initial transplant weight did 

not differ significantly between the woodland and disturbance species groups.  In addition, 

spring leaf litter cover and overhead canopy openness did not vary significantly between 

subplots that had different split-plot treatments, suggesting that these two important variables 

for seedling emergence were also not driving the differences in Microstegium cover.  

The apparently higher initial competitive effects of the disturbance indicators, which 

included two C4 grasses, Saccharum giganteum and Schizachyrium scoparium, could in part be 

explained by their higher functional overlap with Microstegium relative to the woodland 

indicators, which exclusively represented the C3 forb and C3 nitrogen-fixing legume functional 

groups.  Like Saccharum giganteum and Schizachyrium scoparium, Microstegium utilizes the C4 

photosynthetic pathway.  Such relationships of high functional overlap and/or functional 

equivalence between an invader and one or a few resident species have been used recently to 

explain increased invasion resistance of experimentally manipulated plant communities 

(Hooper and Dukes 2010, Byun 2013).  Saccharum and Schizachyrium are perennial 

bunchgrasses, however, a life cycle and growth form quite dissimilar from the annual cycle and 

creeping, decumbent habit of Microstegium.  Finally, it is possible that the variation in initial 

Microstegium cover could be explained by some unaccounted for variable(s) (e.g. plant-soil 

feedbacks, presence or absence of mycorrhizal association).  Regardless, the initial treatment 
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effects were countered sharply an absence of competitive effects on Microstegium in the fall of 

year 1 and spring of year 2, as well as high transplant mortality. 

Out of the six native plant species utilized here, those with the highest initial 

competitive effects were also those with considerably wider geographic ranges and with a 

relatively higher affinity for disturbed early- and mid-successional habitats.  Although promising 

strictly in the sense of providing some suppression of an invader, usage of such common, 

widespread species in planting treatments for Microstegium would serve little benefit towards 

the preservation of global biodiversity.  On the other hand, the woodland indicators did have a 

much greater probability of surviving to the end of year 1 relative to the disturbance indicators.  

Yet management to increase the abundance of these rarer, more range-restricted species, 

while valuable conservation-wise, would seemingly offer no initial competitive suppression of 

Microstegium.  In general, there is evidence that some disturbance indicator species are 

responding positively to the oak woodland restoration treatments at the sites used in this study 

(Brewer et al. 2015), yet their higher observed mortality relative to the woodland indicators 

could largely be a consequence of their general shade intolerance.  Some subplots within 

established Microstegium patches had less than 5% overhead canopy openness, values 

exceedingly low for moderately shade intolerant species such as the native C4 grasses used 

here.  In contrast, Microstegium is known to possess relatively high shade tolerance for a C4 

grass (Winter et al. 1982), having even been observed setting seed in deep shade within some 

mesic forests of the Eastern US (Cheplick and Fox 2011).   

The reasons for the high mortality of the native transplants later in the growing season 

of 2015 are unclear, but an obvious possibility is increasing competition from Microstegium 
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during the growing season. The competitive effects of Microstegium on transplant survival were 

not directly examined in this study. Nevertheless, I attempted to quantify them indirectly using 

logistic regression.  Results relating transplant survival, however, to Microstegium cover 

provided no evidence of a lower probability of survival with increasing cover of the invasive 

grass.  Logistic regression might not have provided an accurate assessment of the competitive 

effects of Microstegium on the transplants, however, for the following reasons.  First, because 

the experimental plots were established within high-density patches of Microstegium, with the 

exception of a couple of outliers with 11 and 12% cover, most subplots may have contained 

enough Microstegium to have exhibited a negative effect on the transplants. Hence, if a 

minimum threshold of Microstegium cover necessary for negative effects was exceeded in most 

of the subplots, and if these negative effects plateaued at higher levels of cover, then logistic 

regression would likely not reveal a negative effect of cover on survival.  Second, the higher 

mortality of Saccharum and Schizachyrium (grasses in the disturbance indicator group) while in 

the presence of Microstegium is consistent with a previous study suggesting stronger 

suppression of graminoids by Microstegium in a mesic hardwood forest (Flory 2009).  Similar 

patterns were also found in a California grassland, where Case et al (2016) showed that annual 

grasses were more likely to be displaced by an invading non-native annual grass than were 

forbs.  Such results do not necessarily conflict with the interpretation that higher functional 

overlap between Microstegium and the native grasses may explain greater competitive effects 

during the spring emergence of Microstegium.  In essence, the native perennials in the current 

study were competing initially as large cuttings with relatively small Microstegium seedlings.  

However, low light availability throughout the growing season combined with the ability of 
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Microstegium to persist in such environmental conditions may have led to compounding effects 

of shade intolerance and interspecific competition, causing the higher mortality observed for 

the native grasses relative to the forbs.  Third, and perhaps most important, results of an 

ongoing experiment using the same transplant species at the same sites revealed a highly 

significant and positive effect of Microstegium removal on transplant survival by the end of the 

first growing season (Brewer and Moyer, unpublished data).  Clearly, Microstegium is a superior 

competitor to the native plant species studied here.  

Overall, the results of this study suggest that a six species assemblage of large native 

plants with a range of habitat fidelity to open oak woodlands can be planted into established 

patches of the highly invasive non-native grass Microstegium vimineum, initially survive, and 

reduce its emergence.  Nevertheless, the competitive effects of the natives appear to vary 

significantly between species and are ephemeral, not lasting through the first growing season 

of when the plantings occurred.  The native species that are more indicative of a rare habitat 

type (open oak woodlands), while not having greater initial competitive effects, were better 

suited than the disturbance indicators to long-term survival within patches of the invasive 

grass, perhaps due to their greater tolerance of partially shady conditions in the oak woodland 

where this study took place.  In contrast to predictions of theory and results of previous 

experimental studies, diverse plantings of native species were not more effective at reducing 

the initial emergence of Microstegium than monocultures.  Results do suggest that habitat 

management to increase the abundance of the disturbance indicators (i.e. monoculture 

plantings and canopy thinning) could potentially improve the biotic resistance of this system to 

such highly invasive species as Microstegium, at least initially.  However, such species may need 
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to be planted at higher densities than was done in this study and/or may require more open 

canopies than provided here. In addition, to preserve the biotic distinctness of the groundcover 

vegetation in a habitat type like these open oak woodlands, it would ultimately be necessary to 

include the more range-restricted endemics in such plantings.  Assuming most or all species 

could survive competition from Microstegium, such a planting scheme could help to preserve 

global biodiversity and local biotic resistance to invasion.  However, no type of biodiversity 

management will likely be effective at preventing invasion by species that are vastly 

competitively superior to the resident species.  
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